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A b s t r a c t - A  predictive control method for multivariable bilinear processes is derived based on ARMA model. 
To identify bilinear process models, we use simple equation error method extended to multivariahle system. We 
can obtain the adaptive predictive controller for multivariable bilinear processes by incorporation of the identification 
algorithm. Offset compensator is provided to correct for the effects of unmeasured disturbances and model inaccuracies. 
A filter with a singled parameter is used to correct for the effects of an incorrect model. Results of simulation on 
multivariable bilinear processes show that the proposed control method has satisfactory performance. 
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INTRODUCTION 

Much research in the field of process control has been primarily 
focused on the design of a control system capable of maintaining 
the process at its optimal steady-state despite changing various 
operating conditions. Most typical industrial processes are time 
varing and nonlinear in nature, and in many instances the task 
of modelling such processes is a very difficult one. This is why 
many morden control methods that require an exact knowledge 
of the process cannot be applied satisfactorily to the control of 
such processes. Moreover such fixed gain control strategies can- 
not satisfactorily accommodate changes in the operating plant. 
Thus, it is essential to develop a new control technique applicable 
to nonlinear system. 

Recently, rapid development of digital computer technology has 
made it possible to implement more sophisticated control meth- 
ods. The predictive control method was subsequently developed 
[Clarke et al., 1987a, b; Demircioglu and Clarke, 1993; Kouvarita- 
kis and Rossiter, 1993a, b; Yeo, 1986] and applied successfully 
to several industrial processes involving multivariable process dy- 
namics [Clarke, 1988]. But, in many practical situations, the op- 
erating conditions vary with time, and it is very difficult to obtain 
any information about the parameters of the process to be control- 
led. Thus, adaptive predictive control method is believed to be 
the promising strategy applicable in these situations and has re- 
cently received much attention as one of the computer control 
techniques which meet today's need for more effective control 

strategy. 
Many efforts have been devoted to the extension of existing 

adaptive control method to predictive control method. Lee arid 
Lee [1983] described the adaptive control scheme for distur- 
bance-free systems using a long term predictor. Martin-Sanchez 
et al. [1984] proposed a stable adaptive predictive control system. 
They used an equation error identification method and prow;d 
several stability properties. Martin-Sanchez and Shah [1984] have 
applied the above adaptive predictive control scheme to the con- 
trol of a pilot scale binary distillation column. Cluett et al. [1985] 
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also used the above adaptive predictive controller in the control 
of a Pu batch reactor. But, since most of the adapive predictive 
control methods developed so far are based on the linear system 
models, they cannot handle nonlinear situations which arise espe- 
cially in the control of chemical processes. Linear systems are 
described by linear differential or algebraic equations, and the 
principle of superposition applies. Nonlinear systems are describ- 
ed by complex nonlinear differential equations and linear approxi- 
mation methods have been used in the control of the nonlinear 
system. However, the intrinsic limits of the use of linear models 
appear more and more evident. 

Recently, the class of bilinear models has been introduced as 
a useful tool for examining many nonlinear phenomena. Yeo 
[1986] proposed the adaptive predictive control method for 
single-input single-output bilinear systems using the autoregres- 
sive moving average (ARMA) model. Many successful application 
results summarized by Mohler and Kalodzies [1980] illustrate 
the effectiveness of the use of bilinear models as approximations 
of nonlinear systems. The primary objective of the present study 
is to provide the adaptive predictive control method using multi- 
variable bilinear model which is applicable to more general situa- 
tions and can be easily implemented on real processes. 

CONTROLLER DESIGN 

The multivariable plant to be controlled is assumed to be de- 
scribed by a discrete, bilinear model of the form 

N m 

Y*(k)= Z [A~*Y(k-i)+ Z B0*Y(k- i )u j (k - i -T)  
i = 1  j - I  

+ C~*U(k- i -- T)] (1) 

T is the known time delay, hut we do not need the exact know- 
ledge of the plant structure. We will simplify the problem by con- 
sidering one-step ahead prediction. 
1. Prediction of Output 

The prediction of the future outputs Y*(k+ 1),..',Y*(k+T) does 
not require future inputs. Since the present modelling error vec- 
tor E(k) given by (2) is known, these predicted future values can 
be obtained by successive substitutions. 
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E ( k ) :  Y(k) - Y*(k) 

Now we define 

]-Y*(k+ T- 1) ] ~,~ 

V o :  / : , 
- L Y * ( k + T -  N)-I 

[ U*(k- 1) -] 
/ : 
L U * ( k -  N) .1 

-- LXN -I ' Y*(k+ T -- N)u~,(k -- i)~ 

E =  

At* A2* " " " AN* "1 

A2* A6* " " AN* 0 I~RnNx.g" 
3 AN* 0 " " 0 

B =  

B,* !~2 . . . .  B~* "1 

i~*  !~*  �9 �9 B~* 0 [ ~ R . , ~ . ~  ' 

BN* 0 " " 0 

(2) ' -  ' 
Z A j  ~*Q,+G, .~F0+E(k) ;  j ~ N - 1  

Q/ = ~ = 0  
. \  

X; A,*Q~-~+ E(k) ; j > N  

j ) [  [ V,_ l(k,k + j - -  1,u~(k + J ) ]  / 
Vl(k,k + 

V~_,(k ,k+j : -  1)u=(k+j)-I; j ~ 2  

2. D e s i g n  o f  t h e  C o n t r o l l e r  
The  computat ions  involving the i terat ions of large d imens ion  

matr ices  cause numerical  difficulties. For simplicity, we consider  
the case of one-s tep ahead prediction. The  objective function is 
g iven by 

J =  [-Y~(k+ T +  1) - Y * ( k + T +  1)]ZF[Yd(k + T +  1) 
- Y*(k + T + 1)] + UT(k)BU(k) (7) 

where  

F =  diag{yt2,...,y2} 

B :  diag{f3t2,...,fl, z } 

We define 

C1" C2" " " �9 Cs* 

F =  �9 ~ R  ~ N  

C~* 0 0 

K*=[-B,I* Kz* " " B,,~*]~R "~'~, G i = [ 0  �9 " 010 �9 �9 0 ] ~ R  "~'~ 

Fo= ~ + B~_~+ F U o ~ R  "Nx' 

T h e n  Y*(k+T)  can be wri t ten  as 

Y*(k + T) = GaFo + E ( k ) :  Qo (3) 

Using this equation,  we have 

Y * ( k + T + I ) = A * Y * ( k + T ) +  �9 �9 + A N * Y * ( k + T - N + I ) +  �9 �9 
+ Bu *Y*(k+T) u l ( k ) +  �9 ' + BN~*Y*(k+T-  N 
+ 1 ) u , ~ ( k - N +  1 ) +  C~*U(k)+ �9 �9 + C a * U ( k -  N 
+ i )  + E(k)  

: (Al*Qo + G2Fo) + I~oU(k) + E(k) 
= Q1 + LmU(k) (4) 

Cont inuing the above procedure,  we obtain 

Y*(k+ T + 2) = Q2 + Mto'V~(k,k+ 1) + L u U ( k +  1) + l[r (5) 

Y*(k + T + 3 ) :  Q3 + N,otVz(k,k + 2) + MulVt(k,k  + 2) 
+ M2o'Vl(k,k + 2) + Mzo2Vt(k,k + 1) + LtzU(k + 2) 
+ LztU(k + 2) + I~oU(k) (6) 

where  

L~ = [Bu*Qj B t 2 * Q ~  �9 �9 BI~*Q/] + C~* 
L~,= [B2t*Q# B~*Q,  �9 �9 I~ ,*Q~]  + C2" + A~*L~ 

I ~  = [ l~t*(~ B~*(~ �9 �9 B~*Q,]  + C~* + A~*L2~+ A:~*L,~ 

N A :  t-B3 Mh B~ M ~ "  �9 B~ M~]  

Q = AI*Y*(k + T) + �9 �9 + AN*Y*(k + T -  N + 1) + E(k) 
_H = B2,*Y*(k+ T -  1 ) u K k -  1) + �9 �9 + l ~ Y * ( k +  T -  1 )u~ (k -  1) 

+ �9 - §  �9 �9 

+ B ~ * Y * ( k  + T - N + 1 ) u ~ ( k -  N + 1) 

Z = C 2 * U ( k - I ) +  �9 �9 + C N * U ( k - N + t )  

R =  [Bu*Y*(k+ T) �9 �9 B~*Y*(k+  T)]  

T h e n  one-s tep ahead output  Y * ( k + T +  1) can be r ep resen ted  by 

Y * ( k + T +  1 )=  Q +  H +  Z+(C~*  + R)U(k) (8) 

Subst i tut ion of (8) into (7) gives 

J = [-Y~(k+ T +  1 ) -  Q -  H -  Z - (C~* +_R)U(k)]TF 
[-Y,~(k + T + D - Q - H -  Z - (C~* + R)U(k)] + UI(k)BU(k) (9) 

Minimizat ion of (9) yields 

U(k) = [ (R+  Ct*)rI '(B + C~*)+ B] -~(R + C~*)rF{Y~(k + T +  1) 
- Q -  _U-_Z} (10) 

Rear rangemen t  of (10) gives 

U(k) = W[Y~(k + T + 1 ) -  A~*Y*(k + T ) -  {Y(k)-  Y*(k)} 
N ra 

- Z { & * Y * ( k + T + [ - i ) +  ~ B , ) ' Y * ( k + T + I - i )  
i= :2  1 =  I 

u:(k + 1 - i) + C,*U(k ~- 1 - i)} ] (11) 

where  

W = [ (B + C~*)T(B+ C1")+ B] ~(B+ C~*)r]7 (12) 

3. O f f s e t  C o m p e n s a t o r  

At steady-state,  (1) gives 

y , * :  lim Y*(k) = A~*Y~ + (B~* + C*)U~ (13) 
k ~ o ~  

where  
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N N N 
&*= X &*, B~*= X B,, C,*= X C,* 

i=1 i=1 i=1 

~=[KI*Ys"  �9 I~,*Y,]; 1KiKN 

and Y, and U, are steady-state values of output and input variables 
respectively. Sustitution of (13) into (11) yields upon rearrange- 
ment 

{(B~ + C,*)T(B, + C~*) + B} Us = (B + C,*)T(Y~, - Y,) 
+ (BA 2r- CI*)TF(B1 + C l * ) U s  (14 )  

where B~= [Bu*Y, �9 �9 Bx,*Y~]. From (14), we can see that there 
is no offset if B=0, and that nonzero [~ always gives offset. As 
before, we introduce a constant offset compensation matrix K ~  
R ~" such that (11) becomes 

U(k) = _W[ KY~(k + T + 1 ) -  (A~* - A~* + KAs*)Y*(k + T) 
N 

-K{Y(k)-Y*(k)}-  X { & * Y * ( k + T + l - i ) +  Z By*Y* 
2-2 j=l 

(k + T + 1 - i)uffK + 1 - i) + C,*U(k+ 1 - i)}] (15) 

At steady-state, (15) becomes 

{(B, + C,*)rf'(B, + C,*) + B}Us-- (B, + c , ) r r [  K(Y~ - Y,) + {(K- I) 
(B,* + C**) + (B~+ Ct*)}U~] (16) 

Rearrangement of (16) gives 

(B~ + C~*)rI'(Y~ - Y,) = { n -  (B, + C,*)rF(K - 1)(13,* + C*)} U, (17) 

It is clear from (17) that zero offset is achieved if 

B -  (B,+ C,*)rI'(K - 1) (K*+ C~*)= O 

o r  

B + (B~ + C~*)z'F(Bs * + Cs*) = (B~ + C,*)rI'K(B~* + C~*) (18) 

If n =  m, i.e., input and output vectors have the same dimensions, 
K has the explict form given by 

K = I +  {(B, + C,*)rI'}-'B(B,* + C,*) -~ (19) 

IDENTIFICATION ALGORITHM 

Since an identification algorithm is itself an adaptation algori- 
thm in the adaptive control system, the analysis of the identifica- 
tion problem with bounded disturbances has often been coupled 
with the analysis of adaptive control systems with bounded dis- 
turbances. Samson [ 1983] analyzed the idehtification methods for 
the discrete-time system subject to bounded disturbances. Identi- 
fication for bilinear systems has been studied by Frick arid Valavi 
[1978], Kubrusly [1981], Zhang [1983], Wang et al. [1987]. Yeo 
[1986] have used ARMA model in the identification of single 
variable bilinear systems. 

A single variable bilinear system can be described by ARMA 
representation of a form 

y(k) = pTx(k-- 1) + d(k) (20) 

In order to identify the system parameter vector p, we propose 
a recursive identification algorithm of the form 

p*(k) = p*(k-  1)-+- 5,(k- 1)x(k- 1)e*(k) (21) 

where 

e(k) = y(k)-  y*(klk) 
e*(k) = y(k)-  y*(ki k -  1) 
y*(kl k)= p*T(k)x(k- 1) 

y*(klk-  1) = p*r(k-  1)x(k- 1) 

and the gain ~(k-1)  is calculated as follows 

2Mk)[~(k)- 1] 
~ ( k _ l ) = ~  ~(k)ilx(k-1)[l~+0(k) ; ~(k)>l 

0 ; ~(k)<l (22) 

where 

[e*(k)l ~(k)= q~ 

0<~.(k)<l 
0<0(k)<Ri<oo 
l<q<R2<oo 

In this study the above identification algorithm is used and the 
extension to multivariable bilinear system is relatively straigthfor- 
ward. 

EXAMPLES 

To illustrate the proposed adaptive predictiw.' control method 
for multivariable bilinear models, we present some simulation 
examples. To demonstrate the effect of tuning parameter [3 and 
the usefulness of the offset compensator, the incorrect models 
is used in non-adaptive predictive control. To correct for the effect 
of model inaccuracy, we introduce a simple filter given by 

U(k) = ( 1 -  a)U*(k) + a U ( k -  1) (23) 

where U*(k) is the unfiltered input vector from the control algori- 
thm (15). In order to demonstrate the useful features of the iden- 
tification algorithm used in this study, we present the result of 
identification in example 2. Results of simulations of the proposed 
adaptive predictive method are shown in example 1 and 3. In 
examples 1 and 3, the disturbance is assume(] to be constant 
as D(k)= [0.5 0.5] r. Constant matrices I" and B are used in the 
simulations, i.e., u l (1Kign)  and ~,= ~(l<i<m).  
1. Example  1 

The process is given by (24) and the model of the process 
is assumed to be represented by (25). 

+ [005 102]Y(k- 1)u l (k-4)+  [ -  00"12003]Y(k- 2)ul(k-5) 

2], 

0.48 0 -0 .11  0.02 [o.,,.,o] - - [ o . o 1  - - 
+ Yk 1)ul(k 4) Y(k 2)ul(k 5) 

+[31]86 li075]U(k-4)+[-2~.31 0.52j0A31u(k--5) (25, 

The result of control for ~ - 0  is shown in Fig. 1. For 6=0,  the 
controller is unstable. The results of control for [3=0.5, 1.0, and 
3.0 are shown in Fig. 2, 3, and 4. Increasing [3 yields stable behav- 
ior, but the offset increases as ~ increases. Fig. 5 show the effect 
of the offset compensator for 6=3.0. The offset is eliminated by 
the introduction of the offset compensator, but the response is 
much more oscillatory and takes much longer to reach steady 
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Fig. 1. Results of  control f o r  example 1 ([3=0.0).  
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Fig. 2. Results of control for example 1 ([3=0.5).  
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Fig. 4. Results of control for example 1 (13=3.0). 

80 100 

state. Fig. 6 shows the smoothing effect of the filter. As ct is in- 
creasesd, the response becomes more damped and more sluggish, 
but it does not take significantly longer to reach steady state than 
it does when the compensator is used without the filter. 
2. Example  2 

The multivariable bilinear process used in this example is the 
same as that in the previous example. In the identification, the 
algorithm given by (20) and (21) with q=  1, 0(k)= 1, and X(k)=~(k) 
/2[~(k) -1]  was used. The inputs are pseudo-random binary se- 
quences (PRBS) with an amplitude of 0.5. The ranges; of distur- 

bances are -1.2Kd1(k)<l.2 and -0.2<dz(k)K0.2 respectively. 
The initial values of the model parameters correspond to non-zero 
process parameters and zero process parameters are set to 1.0 
and 0.0 respectively. Fig. 7 shows the output tracking errors. We 
can see that the output tracking errors are confined within the 
expected bound of disturbances. 
3. Example  3 

The process used in this example is the same as that in the 
previous example. The process initially has zero inputs, outputs 
and disturbances. The initial values of the model parameters are 
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Fig. 5. Effect of offset compensator for example 1 (13=:3.0). 
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the same as that in example 2. The results of the adaptive predic- 
tive control are shown in Fig. 8. As we can see outputs track 
the set points very well. 

CONCLUSION 

A predictive control methods for multivariable bilinear process- 
es have been developed in this study. The controller uses a bill- 
near model, which makes possible a greater  range of accurate 
representation of a general nonlinear process than is possible with 

SeDtember, 1995 

a linear model. Representation of future outputs in terms of avail- 
able data is complicated for multivariable biHnear processes, and 
one-step ahead prediction was employed in the present study. 
But, numerical simulation results show the satisfactory perfor- 
mance even with disturbances and incorrect model. The  offset 
caused by the increase of tuning parameter 13 is eliminated by 
the offset compensator proposed in this study. A filter is used 
to reduce the oscillation caused by the introduction of the offset 
compensator. Simulation results show the effectiveness of the off- 
set compensator and filter. Controller tuning is simple through 
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the following adjustment of two parameters. The control algorithm 
parameter [3 should be selected based on the assumption that 
the model is perfect. The filter parameter a should be selected 
to reduce the oscillation. 

Any suitable recursive identification algorithms can be used 
in the present adaptive predictive control method. "['be equation 
error identification method extended to multivariable system was 
used in this study. By combining the previous identification algo- 
rithm with the predictive control method developed in this study, 
we could obtain the adaptive predictive control method for muki- 
variable bilinear processes. Tuning and the theoretical study of 
robustness of adaptive predictive control method for multivariable 
bilinear process remain as major problems. 

ACKNOWLEDGEMENT 

This research was supported in part by NON DIRECTED RE- 
SEARCH FUND, Korea Research Foundation. 

NOMENCLATURE 

A,,B 0, C, : process parameter matrices ( ~ R  =", ER '~" and ~ R  ~=" 
respectively) 

A,*, B,j*, C,* : model parameter matrices (~R  '~", ~ R  "*" and ~ R  "~'" 
respectively) 

D : disturbance bound 
D : disturbance vector, ~ R  "~a 
d : disturbance 
E :output error vector, ~ R  '~ 
e, e*: control output error 
I : unit matrix 
J : objective function 
K :offset compensation matrix, ~ R  '~" 
k :time (sampling interval) 
m :the number of input variables 
N : process order 
n :the number of output variables 
p :process parameter vector 
p* :model parameter vector 
q : identification parameter 
R, : constants 
T : time delay 
U :plant input vector, ~ R  "~ 
U* :unfiltered input vector, ~ R  "~1 
U, :steady-state values of input vector, ~ R  "~ 
u : process input 
x :process data vector 
Y :plant output vector, ~ R  '~ 
Y* :model output vector, ~ R  "~ 
Yd :output setpoint vector, ~ R  "~a 
Y, :steady state values of output vector, ~ R  "~ 
y : process output 
y* : model output 

Greek Let ters  
a : filtering parameter 

B, F :diagonal weighting matrices 
[~, :weight parameter on the input 
?, :weight parameter on the control error 

:normalized control output error 
:gain identification algorithm 

k : identification parameter 
0 :identification parameter 
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